Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2026
-
Abstract We conducted an in-depth analysis of candidate member stars located in the peripheries of three ultra-faint dwarf (UFD) galaxy satellites of the Milky Way (MW): Boötes I (Boo1), Boötes II (Boo2), and Segue I (Seg1). Studying these peripheral stars has previously been difficult due to contamination from the MW foreground. We usedu-band photometry from the Dark Energy Camera (DECam) to derive metallicities to efficiently select UFD candidate member stars. This approach was validated on Boo1, where we identified both previously known and new candidate member stars beyond five half-light radii. We then applied a similar procedure to Boo2 and Seg1. Our findings hinted at evidence for tidal features in Boo1 and Seg1, with Boo1 having an elongation consistent with its proper motion and Seg1 showing some distant candidate stars, a few of which are along its elongation and proper motion. We find two Boo2 stars at large distances consistent with being candidate member stars. Using a foreground contamination rate derived from the Besançon Galaxy model, we ascribed purity estimates to each candidate member star. We recommend further spectroscopic studies on the newly identified high-purity members. Our technique offers promise for future endeavors to detect candidate member stars at large radii in other systems, leveraging metallicity-sensitive filters with the Legacy Survey of Space and Time and the new, narrowband Ca HK filter on DECam.more » « lessFree, publicly-accessible full text available December 26, 2025
-
Abstract We present deep Magellan+Megacam imaging of Centaurus I (Cen I) and Eridanus IV (Eri IV), two recently discovered Milky Way ultrafaint satellites. Our data reach ∼2–3 mag deeper than the discovery data from the DECam Local Volume Exploration Survey. We use these data to constrain their distances, structural properties (e.g., half-light radii, ellipticity, and position angle), and luminosities. We investigate whether these systems show signs of tidal disturbance and identify new potential member stars using Gaia EDR3. Our deep color–magnitude diagrams show that Cen I and Eri IV are consistent with an old (τ∼ 13.0 Gyr) and metal-poor ([Fe/H] ≤ −2.2) stellar population. We find Cen I to have a half-light radius of (90.6 ± 11 pc), an ellipticity ofϵ= 0.36 ± 0.05, a distance ofD= 119.8 ± 4.1 kpc (m−M= 20.39 ± 0.08 mag), and an absolute magnitude ofMV= −5.39 ± 0.19. Similarly, Eri IV has (65.9 ± 10 pc),ϵ= 0.26 ± 0.09,D= 69.9 ± 3.6 kpc (m−M= 19.22 ± 0.11 mag), andMV= −3.55 ± 0.24. These systems occupy a space on the size–luminosity plane consistent with other known Milky Way dwarf galaxies, which supports the findings from our previous spectroscopic follow-up. Cen I has a well-defined morphology that lacks any clear evidence of tidal disruption, whereas Eri IV hosts a significant extended feature with multiple possible interpretations.more » « lessFree, publicly-accessible full text available May 7, 2026
-
Chemical abundances of stellar streams can be used to determine the nature of a stream’s progenitor. Here we study the progenitor of the recently discovered Leiptr stellar stream, which was previously suggested to be a tidally disrupted halo globular cluster. We obtain high-resolution spectra of five red giant branch stars selected from the Gaia DR2 catalog with Magellan/MIKE. One star is a clear non-member. The remaining four stars display chemical abundances consistent with those of a low-mass dwarf galaxy: they have a low mean metallicity, ; they do not all have identical metallicities; and they display low [ /Fe] and [Sr/Fe] and [Ba/Fe] . This pattern of low and neutron-capture element abundances is only found in intact dwarf galaxies with stellar mass . Although more data are needed to be certain, Leiptr’s chemistry is consistent with being the lowest-mass dwarf galaxy stream without a known intact progenitor, possibly in the mass range of ultra-faint dwarf galaxies. Leiptr thus preserves a record of one of the lowest-mass early accretion events into the Milky Way.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract The growing number of Milky Way satellites detected in recent years has introduced a new focus for stellar abundance analysis. Abundances of stars in satellites have been used to probe the nature of these systems and their chemical evolution. However, for most satellites, only centrally located stars have been examined. This paper presents an analysis of three stars in the Tucana V system, one in the inner region and two at ∼10′ (7–10 half-light radii) from the center. We find a remarkable chemical diversity between the stars. One star exhibits enhancements in rapid neutron-capture elements (anr-I star), and another is highly enhanced in C, N, and O but with low neutron-capture abundances (a CEMP-no star). The metallicities of the stars analyzed span more than 1 dex from [Fe/H] = −3.55 to −2.46. This, combined with a large abundance range of other elements like Ca, Sc, and Ni, confirms that Tuc V is an ultrafaint dwarf (UFD) galaxy. The variation in abundances, highlighted by [Mg/Ca] ratios ranging from +0.89 to −0.75, among the stars demonstrates that the chemical enrichment history of Tuc V was very inhomogeneous. Tuc V is only the second UFD galaxy in which stars located at large distances from the galactic center have been analyzed, along with Tucana II. The chemical diversity seen in these two galaxies, driven by the composition of the noncentral member stars, suggests that distant member stars are important to include when classifying faint satellites and that these systems may have experienced more complex chemical enrichment histories than previously anticipated.more » « less
-
Abstract In this paper, we present a chemical and kinematic analysis of two ultrafaint dwarf galaxies (UFDs), Aquarius II (Aqu II) and Boötes II (Boo II), using Magellan/IMACS spectroscopy. We present the largest sample of member stars for Boo II (12), and the largest sample of red giant branch members with metallicity measurements for Aqu II (eight). In both UFDs, over 80% of targets selected based on Gaia proper motions turned out to be spectroscopic members. In order to maximize the accuracy of stellar kinematic measurements, we remove the identified binary stars and RR Lyrae variables. For Aqu II, we measure a systemic velocity of −65.3 ± 1.8 km s−1and a metallicity of [Fe/H] = . When compared with previous measurements, these values display a ∼6 km s−1difference in radial velocity and a decrease of 0.27 dex in metallicity. Similarly for Boo II, we measure a systemic velocity of km s−1, more than 10 km s−1different from the literature, a metallicity almost 1 dex smaller at [Fe/H] = , and a velocity dispersion 3 times smaller at km s−1. Additionally, we derive systemic proper-motion parameters and model the orbits of both UFDs. Finally, we highlight the extremely dark-matter-dominated nature of Aqu II and compute the J-factor for both galaxies to aid searches of dark matter annihilation. Despite the small size and close proximity of Boo II, it is an intermediate target for the indirect detection of dark matter annihilation due to its low-velocity dispersion and corresponding low dark matter density.more » « less
-
ABSTRACT Milky Way globular clusters (GCs) display chemical enrichment in a phenomenon called multiple stellar populations (MSPs). While the enrichment mechanism is not fully understood, there is a correlation between a cluster’s mass and the fraction of enriched stars found therein. However, present-day GC masses are often smaller than their masses at the time of formation due to dynamical mass-loss. In this work, we explore the relationship between mass and MSPs using the stellar stream 300S. We present the chemical abundances of eight red giant branch member stars in 300S with high-resolution spectroscopy from Magellan/MIKE. We identify one enriched star characteristic of MSPs and no detectable metallicity dispersion, confirming that the progenitor of 300S was a GC. The fraction of enriched stars (12.5 per cent) observed in our 300S stars is less than the 50 per cent of stars found enriched in Milky Way GCs of comparable present-day mass (∼104.5 $$\mathrm{\, {\rm M}_{\odot }}$$). We calculate the mass of 300S’s progenitor and compare it to the initial masses of intact GCs, finding that 300S aligns well with the trend between the system mass at formation and enrichment. 300S’s progenitor may straddle the critical mass threshold for the formation of MSPs and can therefore serve as a benchmark for the stellar enrichment process. Additionally, we identify a CH star, with high abundances of s-process elements, probably accreted from a binary companion. The rarity of such binaries in intact GCs may imply stellar streams permit the survival of binaries that would otherwise be disrupted.more » « less
-
Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (R∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of km s−1, which results in a dynamical mass of M⊙and a mass-to-light ratio ofM/LV= M⊙/L⊙. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L> 80M⊙/L⊙). However, we do not resolve a metallicity dispersion (σ[Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in line with its orbital parameters. Intriguingly, Grus I has among the lowest central densities ( M⊙kpc−3) of the UFDs that are not known to be tidally disrupting. Models of the formation and evolution of UFDs will need to explain the diversity of these central densities, in addition to any diversity in the outer regions of these relic galaxies.more » « less
-
ABSTRACT The Merian survey is mapping ∼ 850 deg2 of the Hyper Suprime-Cam Strategic Survey Program (HSC-SSP) wide layer with two medium-band filters on the 4-m Victor M. Blanco telescope at the Cerro Tololo Inter-American Observatory, with the goal of carrying the first high signal-to-noise (S/N) measurements of weak gravitational lensing around dwarf galaxies. This paper presents the design of the Merian filter set: N708 (λc = 7080 Å, Δλ = 275 Å) and N540 (λc = 5400 Å, Δλ = 210 Å). The central wavelengths and filter widths of N708 and N540 were designed to detect the $$\rm H\alpha$$ and $$\rm [OIII]$$ emission lines of galaxies in the mass range $$8\lt \rm \log M_*/M_\odot \lt 9$$ by comparing Merian fluxes with HSC broad-band fluxes. Our filter design takes into account the weak lensing S/N and photometric redshift performance. Our simulations predict that Merian will yield a sample of ∼ 85 000 star-forming dwarf galaxies with a photometric redshift accuracy of σΔz/(1 + z) ∼ 0.01 and an outlier fraction of $$\eta =2.8~{{\ \rm per\ cent}}$$ over the redshift range 0.058 < z < 0.10. With 60 full nights on the Blanco/Dark Energy Camera (DECam), the Merian survey is predicted to measure the average weak lensing profile around dwarf galaxies with lensing S/N ∼32 within r < 0.5 Mpc and lensing S/N ∼90 within r < 1.0 Mpc. This unprecedented sample of star-forming dwarf galaxies will allow for studies of the interplay between dark matter and stellar feedback and their roles in the evolution of dwarf galaxies.more » « less
An official website of the United States government
